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Collective oscillatory behaviour is ubiquitous in nature1, having 
a vital role in many biological processes from embryogenesis2 
and organ development3 to pace-making in neuron networks4. 
Elucidating the mechanisms that give rise to synchronization is 
essential to the understanding of biological self-organization. 
Collective oscillations in biological multicellular systems often arise 
from long-range coupling mediated by diffusive chemicals2,5–9, by 
electrochemical mechanisms4,10, or by biomechanical interaction 
between cells and their physical environment11. In these examples, 
the phase of some oscillatory intracellular degree of freedom is 
synchronized. Here, in contrast, we report the discovery of a weak 
synchronization mechanism that does not require long-range 
coupling or inherent oscillation of individual cells. We find that 
millions of motile cells in dense bacterial suspensions can self-
organize into highly robust collective oscillatory motion, while 
individual cells move in an erratic manner, without obvious periodic 
motion but with frequent, abrupt and random directional changes. 
So erratic are individual trajectories that uncovering the collective 
oscillations of our micrometre-sized cells requires individual 
velocities to be averaged over tens or hundreds of micrometres. 
On such large scales, the oscillations appear to be in phase and 
the mean position of cells typically describes a regular elliptic 
trajectory. We found that the phase of the oscillations is organized 
into a centimetre-scale travelling wave. We present a model of noisy 
self-propelled particles with strictly local interactions that accounts 
faithfully for our observations, suggesting that self-organized 
collective oscillatory motion results from spontaneous chiral and 
rotational symmetry breaking. These findings reveal a previously 
unseen type of long-range order in active matter systems (those in 
which energy is spent locally to produce non-random motion)12,13. 
This mechanism of collective oscillation may inspire new strategies 
to control the self-organization of active matter14–18 and swarming 
robots19.

Like many other flagellated bacteria, Escherichia coli cells can swarm 
over the surface of solid substrates such as agar plates20, forming  
densely packed colonies with a surface packing fraction21 of about 50%.  
Under standard growth conditions (see Methods), E. coli cells (0.8 µ m  
in diameter, 2–4 µ m in length) produce a 5–10-µ m-thick layer of 
‘swarm fluid’22 spanning most of the agar surface, in which they swim 
at a mean speed of 34 µ m s−1 (Extended Data Fig. 1). The resulting  
quasi-two-dimensional dense bacterial suspension can persist over 
large spatial scales (centimetres) for hours. We grew about one  hundred 
of such colonies. Approximately 12 h after inoculation, the colony has 
invaded the whole dish and the cells, observed in phase-contrast  videos, 
display a disordered state with collective motion at small spatial scales 
(a few tens of micrometres) taking the form of transient jets and  vortices 
(Supplementary Video 1). This ‘bacterial’ or ‘mesoscale’ turbulence has 
been described recently and the rheology of concentrated  suspensions 
received a lot of attention from active matter physicists23–26.

As the cell density increases further owing to cell multiplication 
(Methods), a heretofore unnoticed phenomenon emerges. Although 
no apparent change seems to occur in phase-contrast videos 
(Supplementary Video 2), their velocity, measured via particle image 
velocimetry (PIV) analysis (Methods) and averaged over spatial scales 
greater than about 100 µ m undergoes regular periodic oscillations 
within the plane of the swarm-fluid film (Fig. 1c and Extended Data 
Fig. 2). This collective oscillatory motion (hereafter referred to as  
‘collective oscillation’) is characterized by a fluctuating but  featureless, 
spatially homogeneous velocity field that oscillates in time. (Note 
that this is fundamentally different from the rotational modes or 
vortical collective motion commonly found in biological and active 
matter  systems under confinement27). Once emerged, the collective 
 oscillation can persist for at least half an hour. The oscillation period is 
steady over time and ranges from 4 s to 12 s across different colonies. 
The  orthogonal components of the collective velocity are well fitted 
by  sinusoidal functions with identical period but different amplitude 
and phase (Extended Data Fig. 2), indicating that the average positions 
of cells follow elliptical trajectories. We observed the same collective 
oscillation in swarms of Proteus mirabilis, a species similar to E. coli in 
terms of motile behaviour but distinct in biochemistry.

The collective oscillation was also clearly manifested when we visua-
lized the flow of the upper swarming fluid using silicone-oil droplets 
with minimal invasiveness (Methods). Strikingly, these tracers followed 
smooth and oscillatory elliptical trajectories with quasi-synchronized 
phases even when they were separated by hundreds of micrometres 
(Fig. 1b and Supplementary Video 2). Their velocity and the collective 
velocity of cells were in synchrony as well (Fig. 1c), suggesting that the 
oscillatory flow was generated by the collective motion of cells that drag 
nearby fluid along28. The amplitude of the collective velocity was some-
what smaller than that of the tracers owing to the averaging procedure.

In our experiments we found elliptical collective oscillations most 
often (68 out of 71 cases), with rare exceptions being linear or  irregular 
oscillations (3 out of 71 cases; Extended Data Fig. 3). In almost all cases, 
the chirality and the long-axis orientation of collective  oscillations 
are the same within a specific colony, but the chirality has an equal 
 probability of being clockwise or counterclockwise across different 
 colonies (Extended Data Fig. 3a), indicative of spontaneous global chiral 
 symmetry breaking. The long-axis orientation across different colonies 
is non-uniformly distributed (Fig. 2a), probably reflecting the aniso-
tropy of the large-scale geometry of colonies (Extended Data Fig. 1).  
These results imply that the collective oscillation of cells is correlated 
over very long distances. To verify this, we measured the period and 
phase of collective oscillations in an array of spots spanning an area 
of 9 ×  9 mm2 (Fig. 2b) (Methods). Remarkably, the period remains 
nearly identical across such a macroscopic area (Fig. 2c), while the 
phase  varies linearly over space (Fig. 2d). The collective oscillation of 
cells is thus organized over centimetres (more than 104 times the cell 
length) in the form of longitudinal travelling waves. In the example 
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given in Fig. 2d, the phase propagated with a wavelength of 17 mm and 
a phase velocity of 3.7 mm s−1. Interestingly, the long axis of collective 
oscillations tends to be perpendicular to the propagation direction of 
travelling waves.

Next we examined individual trajectories of bacteria within colonies 
displaying collective oscillation using fluorescent cells (Methods). As 
suggested by phase-contrast videos (Supplementary Video 2), we found 
that cells moved erratically without obvious periodic motion but with 
frequent abrupt turns that are probably due to cell–cell collisions or 
flagellar switching in a dense environment (Fig. 2e and Supplementary 
Video 3). Cells also occasionally swam close to the surface and their 
motion was then weakly biased towards the chirality of the collective 
oscillation (Extended Data Fig. 4). Sharp turns among different cells 
were not synchronized, and the time interval between two consecutive 
turns of the same cell approximately followed an exponential distribu-
tion with an average of 2.1 ±  1.9 s (mean ±  s.d., n =  118) (Extended Data 
Fig. 5). This suggests that individual cells do not behave as oscillators, 
and that the collective oscillation is an emergent weak synchronization 
phenomenon at the population level, in contrast to most other collec-
tive biological oscillations studied2–11.

We then sought to control the emergence of the collective  oscillations.  
We cooled down entire oscillating colonies to a temperature low 
enough to suppress any motion of the cells. Coming back then to the 
original temperature, cells started moving again with normal speed and 
in random directions (Methods). The collective oscillation  typically 
re-emerged from random motion in about 30 min. At onset an irregular 
oscillation first emerged spontaneously, then its amplitude increased 

and a typical elliptic trajectory was recovered within less than one 
 minute (Fig. 3a, c and Extended Data Fig. 6a, b). Remarkably, the 
long-axis orientation and the chirality were uncorrelated to the  original 
one. These results confirm that collective oscillation is the result of 
spontaneous symmetry breaking. In fact, we also found that collective 
oscillation in cooled-off colonies may re-emerge simultaneously in  
several regions with different chirality and we observed that the inter-
face separating two adjacent regions with collective oscillations of 
opposite chirality moves, resulting in local chirality switching accom-
panied by a gradual change of the orientation of the ellipses (Fig. 3b, d 
and Extended Data Fig. 6c, d). This observation suggests that travelling 
waves seen in naturally developed colonies may result from the com-
petition of collective oscillations having emerged in different domains 
and are not strongly coupled with colony development.

Finally, we investigated the mechanism driving collective oscillations.  
We optically deactivated the motility of cells in a small area of  colonies 
already displaying collective oscillation (Methods; Extended Data  
Fig. 7 and Supplementary Video 4). We found that as the speed of the 
cells decreased, the amplitude of collective oscillation, as measured by 
the collective cell velocity and by tracer velocity, decreased as well and 
eventually almost vanished when all cells became totally  immotile, with 
a small-amplitude residual oscillation reflecting the incompressibility of 
fluids (Extended Data Fig. 7b). On the other hand, the  collective oscilla-
tion remained unchanged beyond about 50 µ m outside the  boundary of 
the motility-deactivated area (Extended Data Fig. 7c, d). These results 
confirm that cell motility provides the driving force of  collective 
 oscillation, and that the mechanism maintaining this  emergent 
 phenomenon is local in nature and highly robust to perturbation.

We now present a mathematical model at the individual, ‘particle’ 
level that accounts for all our experimental observations. (We note that 
our model cannot be fully conclusive at this stage because it is based on 
assumptions that will need to be confirmed by a detailed study of the 
complex interactions between bacteria bodies, flagella, gel substrate, 
and the surrounding fluid.) First, in a minimalist approach, we consider 
identical self-propelled particles with strictly local interactions, without 
modelling the surrounding fluid explicitly. Second, to account for the 
experimental observations left unexplained, we ‘immerse’ this model 
in some Stokesian incompressible fluid.

In the Vicsek-style16,29, ‘dry’ core of our model, point particles move 
at constant speed v0 in a two-dimensional domain without any  repulsive 
or attractive interaction. This allows us (1) to account for the fact that 
in the experimental swarming fluid layer cells can pass above each 
other, and (2) to simulate easily millions of cells, as required by the 
large-scale, high-density context of the phenomena observed. Single-
particle dynamics involves an evolution equation for the velocity 
 direction θ that allows for local alignment, but also one for the angular 
velocity or instantaneous frequency ω θ= ɺ to account for short-time 
memory effects introduced by the local fluid vorticity and to allow for 
synchronization of local rotational motion. Both these equations are 
stochastic, with strong noise guaranteeing erratic individual 
 trajectories. Particles within a distance d0 of the order of the bacteria 
body length are subjected to two interactions, a diffusive coupling 
between angular velocities of strength kω, and a polar alignment of 
strength kθ:
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where the sums are over the ni particles j currently in the neighbour-
hood of i, and the delta-correlated noises ξθ and ξω are drawn from 
symmetric uniform distributions in the intervals η η− θ θ[ , ] and 
η η−
ω ω

[ , ]. On the other hand, ξbias has the (current) sign of ω and its 
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Figure 1 | Collective oscillation in dense suspensions of E. coli.  
a, Representative velocity field of cells’ collective motion obtained by PIV 
analysis (see Methods). The red arrow indicates the direction of average 
velocity. In all experimental figures throughout the paper, the + x axis 
represents the colony expansion direction (Extended Data Fig. 1). b, In 
the same field of view as a, two silicone oil tracers (red dots) displayed 
synchronized oscillation in elliptical trajectories (Supplementary Video 2). 
The background is the first frame of Supplementary Video 2. Scale bars in 
a and b are 20 µ m. c, Cells’ collective velocity (blue, x-axis component; red, 
y-axis component) and tracer velocity (green, x-axis component; black,  
y-axis component) in Supplementary Video 2 plotted against time.
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Figure 2 | Collective oscillation organized into a centimetre-scale 
travelling wave. a, Distribution of long-axis orientation of collective 
oscillations (that is, the angle defined in Extended Data Fig. 1b) across 
N =  71 colonies. b, Sequence of measuring a 4 ×  4 array of spots on a 
colony undergoing collective oscillation (Methods). c, The period of 
collective oscillation at all spots plotted in the order of measurement.  
d, Contour map of the phase distribution of collective oscillation across 
the same colony as in c. The phase (colour scale, in radians) can be fitted 

as ϕ =  0.25x +  0.27y (Methods), propagating at 0.37 rad mm−1 along its 
gradient direction. The double-ended red arrow indicates the long axis 
of collective oscillation. e, Single-cell trajectories in the mid-layer during 
collective oscillation (crosses, starting points; pluses, ending points; see 
Supplementary Video 3). An immotile cellular cluster (red trajectory) can 
serve as a flow tracer. Scale bar, 20 µ m. The background is the last frame of 
Supplementary Video 3.
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Figure 3 | Emergence of collective oscillation and chirality switching.  
a, Collective trajectory of cells during the emergence of collective 
oscillation. b, Chirality switching of collective oscillation from 
counterclockwise to clockwise during domain competition. Trajectories 

in a and b were built from the collective cellular velocity obtained by PIV 
analysis (the colour scale shows time in seconds). c, d, Collective velocities 
associated with a and b fitted by the smoothing spline method based on 
PIV data (red, x-axis component; black, y-axis component) (see Methods).
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amplitude decreases with ω : ξ ω ω ω ξ= − /sign( )exp( )i ibias 0  where ξ 
is a uniform noise in η[0, ]bias . This ‘bias’ noise, together with the 
 diffusive coupling between angular velocities, gives the possibility of 
chiral  symmetry-breaking leading to a spatially homogeneous and 
globally oscillating velocity field. Simulations of equations (1) to (2) 
showed that there is a large region of parameter space where collective 
oscillatory motion emerges: global angular velocity Ω ω=  and global 
polarity θ=P iexp( )  take finite values while individual trajectories 
remain erratic (Fig. 4a, b; Methods). Not surprisingly for a diffusive 
oscillatory medium30, travelling-wave configurations with arbitrary 
large wavelength are stable. However, as indicated by the constancy 
over time of Ω and P, average trajectories remain roughly circular in 
all cases (Fig. 4a, b), in contrast to experimental observations.

We now take into account the surrounding viscous fluid in a simpli-
fied way (see Methods for a more complete presentation). Cells interact 
with the surface of the agar gel, pushing themselves away from it and 
entraining some fluid with them. The incompressible, damped fluid is 
governed by a Stokes equation, creating a flow field v that advects 
 particles: = +ɺr v ûvi i0  where û i is the unit vector of orientation θi. 
Simulations of this suspension model show that, in travelling-wave 
configurations, average trajectories of particles are ellipses with the long 
axis perpendicular to the wave propagation direction, in agreement 
with experimental observations (Fig. 4c–e and Fig. 2d). The model also 
accounts well for the residual collective oscillations seen in motility- 
deactivation experiments (Extended Data Fig. 8 and Supplementary 
Video 8).

Taking all results together, we conclude that the emergence of  collective 
oscillatory motion in swarming flagellated bacteria is a robust self- 
organized process probably mediated by local interactions. A defining  
feature of this process is that individual cells remain strongly erratic 
while global order emerges. In contrast to other collective  biological 
oscillations studied so far2–11, which mostly arise from phase- coupling 
between explicit local oscillators, the phenomenon we report is 
 characterized by two key factors. First, our system does not have 
 ‘obvious’ local oscillators—they emerge only from noise upon sufficient 
coarse- graining; second, our synchronization is of erratic  trajectories, 
that is, it occurs in physical space but not in phase space. As such, 
this phenomenon may constitute weak synchronization of stochastic 

 trajectories, a type of ordered active matter not seen before, to our 
knowledge. The phenomenon may influence spatial patterning of 
 biofilms in bacterial colonies (Extended Data Fig. 9). This mechanism 
of collective oscillation may be relevant to diverse biological processes 
that involve a large population of locally interacting cells with noisy and 
non-oscillating individual behaviour.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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